ABCG2 and ABCB1 Limit the Efficacy of Dasatinib in a PDGF-B-Driven Brainstem Glioma Model.
نویسندگان
چکیده
Dasatinib is a multikinase inhibitor in clinical trials for glioma, and thus far has failed to demonstrate significant efficacy. We investigated whether the ABC efflux transporters ABCG2 and ABCB1 expressed in the blood-brain barrier (BBB), are limiting the efficacy of dasatinib in the treatment of glioma using genetic and pharmacologic approaches. We utilized a genetic brainstem glioma mouse model driven by platelet-derived growth factor-B and p53 loss using abcg2/abcb1 wild-type (ABC WT) or abcg2/abcb1 knockout mice (ABC KO). First, we observed that brainstem glioma tumor latency is significantly prolonged in ABC KO versus ABC WT mice (median survival of 47 vs. 34 days). Dasatinib treatment nearly doubles the survival of brainstem glioma-bearing ABC KO mice (44 vs. 80 days). Elacridar, an ABCG2 and ABCB1 inhibitor, significantly increases the efficacy of dasatinib in brainstem glioma-bearing ABC WT mice (42 vs. 59 days). Pharmacokinetic analysis demonstrates that dasatinib delivery into the normal brain, but not into the tumor core, is significantly increased in ABC KO mice compared with ABC WT mice. Surprisingly, elacridar did not significantly increase dasatinib delivery into the normal brain or the tumor core of ABC WT mice. Next, we demonstrate that the tight junctions of the BBB of this model are compromised as assessed by tissue permeability to Texas Red dextran. Finally, elacridar increases the cytotoxicity of dasatinib independent of ABCG2 and ABCB1 expression in vitro In conclusion, elacridar improves the efficacy of dasatinib in a brainstem glioma model without significantly increasing its delivery to the tumor core. Mol Cancer Ther; 15(5); 819-29. ©2016 AACR.
منابع مشابه
Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib.
Although the development of tyrosine kinase inhibitors (TKIs) to control the unregulated activity of BCR-ABL revolutionized the therapy of chronic myeloid leukemia, resistance to TKIs is a clinical reality. Among the postulated mechanisms of resistance is the overexpression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2), w...
متن کاملPilot PET Study to Assess the Functional Interplay Between ABCB1 and ABCG2 at the Human Blood–Brain Barrier
ABCB1 and ABCG2 work together at the blood-brain barrier (BBB) to limit brain distribution of dual ABCB1/ABCG2 substrates. In this pilot study we used positron emission tomography (PET) to assess brain distribution of two model ABCB1/ABCG2 substrates ([(11) C]elacridar and [(11) C]tariquidar) in healthy subjects without (c.421CC) or with (c.421CA) the ABCG2 single-nucleotide polymorphism (SNP) ...
متن کاملOCT-1, ABCB1, and ABCG2 Expression in Imatinib-Resistant Chronic Myeloid Leukemia Treated with Dasatinib or Nilotinib
This study explored drug transporter expression levels and their impact on clinical response to imatinib and second-generation tyrosine kinase inhibitors (TKIs) in imatinib- resistant chronic myeloid leukemia (CML). Imatinib-resistant chronic phase CML patients treated with dasatinib (n=10) and nilotinib (n=12) were enrolled. The mRNA expression of the OCT-1, ABCG2, and ABCB1 genes was quantifi...
متن کاملImpact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) gene dosage on plasma pharmacokinetics and brain accumulation of dasatinib, sorafenib, and sunitinib.
Low brain accumulation of anticancer drugs due to efflux transporters may limit chemotherapeutic efficacy, necessitating a better understanding of the underlying mechanisms. P-glycoprotein (Abcb1a/1b) and breast cancer resistance protein (Abcg2) combination knockout mice often display disproportionately increased brain accumulation of shared drug substrates compared with single transporter knoc...
متن کاملBrain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment.
PURPOSE Imatinib, a BCR-ABL tyrosine kinase inhibitor, is a substrate of the efflux transporters P-glycoprotein (P-gp; ABCB1) and ABCG2 (breast cancer resistance protein), and its brain accumulation is restricted by both transporters. For dasatinib, an inhibitor of SCR/BCR-ABL kinases, in vivo interactions with P-gp and ABCG2 are not fully established yet. EXPERIMENTAL DESIGN We used Abcb1a/1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2016